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An examination of the heuristic capabilities of the self-organized criticality (SOC) theory for studying social processes, reviewing 

key ideas of the theory and the methods of identifying pink noise as an SOC attribute. The authors analyze terrorism in twenty 

countries in the period from 1970s to 2014. The source of the background data is the Global Terrorism Database, maintained by 

the START Consortium. SOC approaches and methodology were used to identify and explain such non-linear effects as spontane-

ous outbreaks of terrorism. It is found that numerical series that reflect changes in the terrorism volume are essentially pink noise. 

This allowed the universal explanatory schemes of SOC theory to be applied to interpret such systems features and dynamics and 

demonstrate that in many countries, terrorism is a self-organized criticality phenomenon. Systems in the state of SOC are capable 

of abrupt growth in activity without any apparent reason. One of the parameters of the numerical series studied ‒ power-law 

exponent ‒can serve as an indicator of the internal state of the societies prone to terror threats. 
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This article aims to identify pink noise in terrorism activities 

in several countries over the past few decades. Since pink 

noise is an attribute of self-organised criticality (SOC), it makes 

SOC-based hypotheses and interpretation possible. The study 

examines numerical series describing the number of terrorism 

events by month in different countries. Our aim is to demon-

strate that SOC theory can be applied to social studies.  

 

1. 1. 1. 1. ApproachesApproachesApproachesApproaches    

Bak and collegues (Bak, Tang, and Wiesenfeld 1988; Bak 

1996) introduced the term “self-organised criticalityˮ to de-

scribe specific patterns in different systems. When a system is 

displaying SOC, then any impulse (even a short, weak and lo-

cal one) will not damp out; instead, it provokes cause-and-

effect chains that span the entire system. The system is overrun 

with numerous reactions and counter-reactions. Thus, a local 

disturbance can have global implications. Thus, a local dis-

turbance can have global implications. The cause and effect 

ratio is no longer commensurate.  

Criticality can appear in systems having specific properties: 

complexity, numerous feedback loops and sensitivity to weak 

perturbation. Bak et al. demonstrated that such systems are 

prone to cause avalanches: abrupt disequilibration and break-

down of key system parameters without apparent cause. SOC 

theory discovers and explains how macroscopic system dy-

namics are connected with numerous microscopic events. It is 

the self-organisation of microscopic processes that causes the 

avalanches (the abrupt transformations) that appear to be 

spontaneous. 

Any system produces numerous signals and noises. A signal 

can be a record of its parameter dynamics in time, or an event 

line it generates. Inside a system displaying SOC, a complex of 

micro- and macroscopic events and their implications cause 

different scale perturbations. This is pink noise (1/f-noise), 

which is an attribute of SOC (Figure 1B). 

SOC theory is a sibling of fractal geometry (Mandelbrot 

1982; Frame and Mandelbrot 2002), and in a way, pink noise 

is a fractal process ‒ a wave making ripples of different size. 

In nature, many systems have been discovered to emit pink 

noise. Pink noise is like the voice of the universe (from fluctu-

ating star luminosity to the electric activity in the human brain). 

The application of SOC theory to social processes is also in-

teresting because it describes non-linear effects: spontaneous 

system activity and disaster mechanisms. Small and large fluc-

tuations in the system are not necessarily provoked by power-

ful external perturbation. They can be caused by macroscopic 

manifestation of microscopic properties of the system. 

Typologically, pink noise approaches white and red (Brown-

ian) noises (Figure 1).  

White noise is a chaotic process. Red noise is a conservative 

process with a strong, though short-term, memory. In this case, 

each following value will depend on the preceding one. Pink 

noise is something in between white and red noises. It is as-

sociated with long-term trends, coexisting with accidental 

events. 

Figure 1: Examples of white (A), pink (B) and red (C) noisesFigure 1: Examples of white (A), pink (B) and red (C) noisesFigure 1: Examples of white (A), pink (B) and red (C) noisesFigure 1: Examples of white (A), pink (B) and red (C) noises    
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Bak defined pink noise in nature as “punctuated equilibriaˮ 

(1996, 29–31, 143): 

Large intermittent bursts have no place in equilibrium systems, 

but are ubiquitous in history, biology, and economics… The com-

plex status is on the border between predictable periodic behav-

ior and unpredictable chaos… Systems with punctuated equilib-

ria combine features of frozen, ordered systems with those of cha-

otic, disordered systems. Systems can remember the past be-

cause of the long periods of stasis allowing them to preserve what 

they have experienced through history, mimicking the behaviour 

of frozen systems. Meanwhile, they can evolve because of inter-

mittent bursts of activity. 

The identification of a process as pink noise warrants a re-

searcher to refer to SOC theory in order to describe the essence 

and dynamics of the system that generated this process.  

 

2. 2. 2. 2. LiteratureLiteratureLiteratureLiterature    

Initially, SOC was introduced to explain how nature works 

(Bak, Tang, and Wiesenfeld 1988; Bak 1996; Sneppen et al. 

1995). But even classical works have admitted the possibility 

of applying this theory to social phenomena.  

Initiatives for adaptation of SOC ideas and methodology by 

cross-disciplinary researchers were brought forward by Turcotte 

(1999; Turcotte and Rundle 2002), Buchanan (2000), Brunk 

(2001, 2002a, 2002b), Borodkin (2005), Kron and Grund 

(2009) and Malinetskii (2013). 

The first studies identify SOC in social processes were dedi-

cated to the history of wars (Roberts and Turcotte 1998; 

Cederman 2003), and strikes and class conflicts (Biggs 

2005). The authors of these papers were able to identify evi-

dence of SOC (such as power-series distribution) and showed 

how social processes could be interpreted through the univer-

sal explanations of SOC theory.  

A more recent work examines social and political conflicts in 

Iraq, Afghanistan and Northern Ireland (Picoli et al. 2014). 

Zhukov and his colleagues attempted to study the effects of 

SOC in social processes (2016). Historical data supplied evi-

dence for the hypothesis that changing noise colour is a good 

indicator of the strength, direction and time of transformations 

in the social system in question. Shimada and Koyama (2015) 

also made a valuable contribution with their observations. They 

showed that SOC effects may indicate a system’s potential and 

readiness for social changes. Thietart found SOC effects in a 

large corporation (2016). Tadić et al. (2017) show the SOC 

mechanism in online social dynamics. 

Thus, the possibility and heuristic efficiency of applying SOC 

to the analysis of social phenomena has been described in 

literature. However, despite its major success in the natural 

sciences, SOC theory is still used very little within social studies 

(with the exception of economics). 

 

3. 3. 3. 3. MethodologyMethodologyMethodologyMethodology 

Pink noise can be identified though spectral analysis. Using 

fast Fourier transform, the complex signal is broken down into 

an array of simple harmonics. Each harmonic is reflected by a 

point on a spectrogram (Figure 2); its coordinates represent 

the harmonic frequency and power. 

 

Sometimes (such as in Figure 2), the allocation of 

points/harmonics can clearly reflect a trend ‒ a statistical pat-

tern. The distribution of signal power by frequency can in some 

cases be described with a power function: 

             (1) 

where S is power; f is frequency; v is ratio coefficient; α is 

power-law exponent. α is important for the identification of 

noise type. With α≈2 the noise is considered to be red. If α≈0, 

then there are reasons to believe that it is white noise, although 

Figure 2: An example of a pink noise spectrogramFigure 2: An example of a pink noise spectrogramFigure 2: An example of a pink noise spectrogramFigure 2: An example of a pink noise spectrogram    

 

Note:  Spectrograms are normally portrayed in logarithmic 

space, so the hyperbola looks like a straight line. 
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other techniques are required in order to precisely identify 

white noise. In pink noise, normally α≈1. If the signal in ques-

tion follows power law (1), then α can be calculated from the 

results of spectrum analysis.  

Bak pointed out that in case of pink noise, α can be in the 

range of 0 to 2 (2013, 69). Evidently, when approaching the 

limits of this range, pink noise gradually transforms into white 

or red. 

For the purposes of this study, we used “Spectral (Fourier) 

analysis“ in Statistica with the following settings: pad length to 

power 2: yes; subtract-mean: yes; detrend: yes; data smooth-

ing: no. A standard R2 tool was used to verify the trend and, 

thereby, the value of α. The closer R2 is to 1, the more solidly 

the trend line approximates the points on the spectrogram. 

In our research, R2 declined significantly when α approached 

0. The determination of α does not allow for a positive identi-

fication of white noise. However, when both α and R2 are rather 

low, it is then very likely that the process in question is more 

chaotic than pink or red noise. Also it needs to be mentioned 

that because of the nature of statistical patterns, a moderate 

deviation of R2 from 1 does not mean that the trend line lacks 

representativeness. 

The methodology is explained in more detail in a paper by 

Zhukov et al. (2016). 

 

4444. . . . Source Data and Chronological FrameworkSource Data and Chronological FrameworkSource Data and Chronological FrameworkSource Data and Chronological Framework    

Monthly data on terrorism events was sourced from the 

Global Terrorism Database (GTD) (National Consortium 2016). 

This very insightful and reliable database contains information 

about more than 150,000 terror attacks all over the world 

since 1970 to date. The database is maintained by the START 

research centre (The National Consortium for the Study of Ter-

rorism and Responses to Terrorism).  

For the purposes of the study, we selected the countries and 

time periods where terror attacks had occurred over at least six 

months during the year (Table 1). For instance, following this 

criterion, terrorism was not common in Germany in 2000–

2010.    

For cross-temporal comparison of α values, the available nu-

merical series were split periods. 

For most countries, the period before the early 1990s (I) 

should be studied separately from the period from the begin-

ning of the 1990s to date (II). As a rule, sources of terrorism 

activity in the first period were different in the second period. 

Namely, since the 1990s Islamic fundamentalism has become 

a powerful driver of terror, whereas in the previous decades 

terrorism was predominantly a tool used by ethnic/nationalist 

separatists and left-wing radical organisations and move-

ments. The data for 1993 was partially lost in the GTD, so we 

can take 1992 as the late limit of period (I), and 1994 as the 

early limit of period (II).  

Where possible, we devoted special attention to the period 

between 2008 and 2014 (III) in all countries. Unfortunately, 

we could not study the year 2016 (or 2017) separately, be-

cause it is too difficult to interpret the α value in this case.  

Table 1: Size and chronological framework of GTD source Table 1: Size and chronological framework of GTD source Table 1: Size and chronological framework of GTD source Table 1: Size and chronological framework of GTD source 

datadatadatadata    

CountryCountryCountryCountry    PeriodPeriodPeriodPeriod    
Number of terror Number of terror Number of terror Number of terror 

attacksattacksattacksattacks    

Algeria 1991–2014 2,721 

Afghanistan 2002–2014 7,613 

United Kingdom 1971–2014 4,919 

Israel 1979–2014 1,988 

India 1983–2014 9,048 

Indonesia 1995–2014 653 

Iraq 2003–2014 15,845 

Spain 1971–2010 3,243 

Colombia 1975–2014 7,954 

Lebanon 1979–2014 2,348 

Nigeria 2006–2014 2,128 

Pakistan 1986–2014 11,490 

Russia 1994–2014 2,060 

United States 1970–2014 2,683 

Turkey 1987–2014 2,548 

Philippines 1978–2014 4,830 

France 1973–2014 2,578 

Germany 1970–1997 1,090 

Sri Lanka 1984–2009 2,924 

South Africa 1979–1996 1,850 
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Time limits of periods (I), (II) and (III) were adjusted for some 

countries (moved within a corresponding time frame) based on 

the specific country and data availability. 

 

5555. . . . ResultsResultsResultsResults    

Figure 3 shows examples of spectrograms of pink noise (A) 

and signal with near-zero α (B). Both types were identified in 

the terror attack intensity fluctuations in different countries. 

 

 

In Pakistan, R2 is technically far from 1. However, the trend 

is evident on spectrogram B from Figure 3. It is especially con-

clusive in comparison to a rather chaotic configuration of 

points on spectrogram A. This typical example brings hope that 

even mediocre values of R2 will not always render it impossible 

to interpret α. Table 2 shows α values for terrorism intensity 

fluctuations in twenty countries over periods (I), (II) and (III).  

The significant changes in α that coincided with major trans-

formations inside some countries speak in favour of the meth-

odology applied. For instance, we found that α decreased in 

Spain from 0.64 (period I) to 0.17 (period II); and in the United 

Kingdom from 0.7 (period II) to 0.19 (period III). In Spain, by 

the end of the 1990s, the Basque separatists had gradually 

changed from terror to legal actions. Similar processes oc-

curred in Northern Irish separatism in the United Kingdom. Pre-

vious terrorism actors became weak, while the new (Islamism-

based) ones obviously proved not to be very strong. By con-

trast, in Columbia, α rose from 0.35 (period I) to 0.87 (period 

II) with a declining tendency in period (III). Although the stand-

off between the government and left radicals had started in 

Colombia back in the 1970s, it was in the 1990s (early period 

II) when FARC was in its prime. Furthermore, these were also 

the years when the country 

faced organised far-right ter-

rorism. 

To identify the types of ter-

ror activity and group the 

countries by such types, a 

cluster analysis of α values 

for 2008–2014 was con-

ducted (Table 2, penulti-

mate column).  

Results of cluster analysis 

are provided on a tree dia-

gram on Figure 4. It was cre-

ated using the cluster anal-

ysis module in Statistica 

with the following settings: 

clustering method: joining 

(tree clustering); linkage 

rule: weighted pair-group average; distance measure: Euclid-

ean distances. At each step, the algorithm moves two clusters 

together with minimal variability. The linkage distance grows 

with every step (Figure 5). As a rule, this process goes from 

slow to abrupt. The cut-point between slow and rapid growth 

(М on Figures 4 and 5) is normally interpreted as the border-

line between natural and purely artificial clusters. 

 

 

 

 

Figure 3: Terror attack intensity spectrogramsFigure 3: Terror attack intensity spectrogramsFigure 3: Terror attack intensity spectrogramsFigure 3: Terror attack intensity spectrograms    

 

 

А – UK, 2008 – 2014, α=0.19, R2=0.071 

В – Pakistan, 1986 – 2014, α=1.12, R2=0.679 
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At clustering distance М, the system identifies four clusters, 

four of which can be considered as adequate. In India, a low 

α value obviously reflects interference of signals from different 

terrorism sources. The United States is an exceptional and sin-

gle cluster.  

The analytical tools applied are indifferent to factors such as 

a country’s location on the map or income level. However, as 

a result of the analysis we have the United States, France and 

the United Kingdom on one end (Figure 4), and Afghanistan 

and Iraq on the other. This may indicate the ability of these 

procedures to discover some hidden information potential in 

the source numerical series.  

Figure 6 demonstrates country migration between clusters 

(except India), that formed in periods I and III (see Table 2). 

Western countries migrated to clusters with smaller α or 

dropped out due to a lack of statistical data. In period III, one 

can observe the formation of a vast cluster “Lebanon – …– Is-

raelˮ in the zone close to pink noise.  

Table 2: PowerTable 2: PowerTable 2: PowerTable 2: Power----law exponents in spectrogramslaw exponents in spectrogramslaw exponents in spectrogramslaw exponents in spectrograms    

CountryCountryCountryCountry    
Period IPeriod IPeriod IPeriod I    Period IIPeriod IIPeriod IIPeriod II    Period IIIPeriod IIIPeriod IIIPeriod III    

yearsyearsyearsyears    α    R2R2R2R2    yearsyearsyearsyears    α    R2R2R2R2    yearsyearsyearsyears    α    R2R2R2R2    

Algeria – – – 1994-2014 0.77 0.527 2008-2014 0.73 0.485 

Afghanistan – – – 2002-2014 1.17 0.628 2008-2014 1.17 0.656 

United Kingdom 1971-1992 0.67 0.476 1994-2014 0.7 0.480 2008-2014 0.19 0.071 

Israel 1979-1992 0.68 0.491 1994-2014 0.6 0.524 2008-2014 0.63 0.547 

India 1983-1992 0.66 0.636 1994-2014 0.52 0.361 2008-2014 0.41 0.227 

Indonesia – – – 1995-2014 0.25 0.121 2008-2014 0.25 0.142 

Iraq – – – 2003-2014 0.98 0.641 2008-2014 1.23 0.693 

Spain 1971-1992 0.64 0.419 1994-2010 0.17 0.033 – – 

Colombia 1975-1992 0.35 0.123 1994-2014 0.87 0.582 2008-2014 0.73 0.505 

Lebanon 1979-1992 0.77 0.480 1994-2014 0.89 0.519 2008-2014 0.89 0.493 

Nigeria – – – – – – 2008-2014 0.78 0.421 

Pakistan 1986-1992 0.47 0.143 1994-2014 1.08 0.700 2008-2014 0.79 0.554 

Russia – – – 1994-2014 0.56 0.480 2008-2014 0.78 0.554 

United States 1970-1992 0.99 0.580 1994-2014 0.17 0.061 2008-2014 -0.115 0.041 

Turkey – – – 1994-2014 0.63 0.415 2008-2014 0.82 0.427 

Philippines 1978-1992 0.56 0.423 1994-2014 0.91 0.665 2008-2014 0.77 0.732 

France 1973-1992 0.41 0.408 1994-2014 0.5 0.262 2008-2014 0.09 0.006 

Germany 1970-1997 0.36 0.159 – – – – – – 

Sri Lanka 1984-1992 1.11 0.593 1994-2009 0.85 0.641 – – – 

South Africa 1979-1996 0.95 0.642 – – – – – – 

Source data: monthly volume of terrorism events according to GTD. 
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of one of the warring parties. According to Kalyvas (2006), 

Figure 4: Tree diagram with the results of clustering sixteen countries Figure 4: Tree diagram with the results of clustering sixteen countries Figure 4: Tree diagram with the results of clustering sixteen countries Figure 4: Tree diagram with the results of clustering sixteen countries by by by by α    valuevaluevaluevalue    in 2008in 2008in 2008in 2008––––2014201420142014    

 

Figure 5: LinkageFigure 5: LinkageFigure 5: LinkageFigure 5: Linkage    distance/step number correlationdistance/step number correlationdistance/step number correlationdistance/step number correlation    
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in these areas, where the control of the territory by one of the  
Figure 6: Figure 6: Figure 6: Figure 6: α----based clusters in 1970sbased clusters in 1970sbased clusters in 1970sbased clusters in 1970s––––1990s (period I) and 20081990s (period I) and 20081990s (period I) and 20081990s (period I) and 2008––––2014 (period III)2014 (period III)2014 (period III)2014 (period III)    

 

 

Note: some countries were added (+) or removed (-) following the rise/disappearance of terrorism as system-wide phenom-

enon and/or changes in statistics.  
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6. 6. 6. 6. Interpretation and HypInterpretation and HypInterpretation and HypInterpretation and Hypothesesothesesothesesotheses    

Depending on the colour of the noise in the numerical series 

and based on the explanatory logic of SOC theory, we have 

shown three types of terrorism activity. This typology is not 

based on the level/intensity of terrorism activity. The specific 

reasons and factors producing a rise or decline in terrorism 

may have different implications in different types of social sys-

tems. Therefore, it is important to understand the specific pro-

file of the society and terrorism actors ‒ what they are capable 

or incapable of. 

Low α values are common in the societies where terrorism 

does not have a systemic internal source. In this scenario, ter-

ror outbreaks, even major events, may be caused by short-term 

and locally-limited extraordinary factors and a random combi-

nation of conditions. Also, the transition from high activity to 

low may be abrupt and chaotic. This reflects such societies’ 

openness to external sources of terrorism. The “whiteˮ type 

countries obviously do not have systemic readiness and need 

for grand-scale perturbations. Such “societiesˮ may be targets 

of threats, but long-term terrorism activity is not generated 

from within.  

Furthermore, we can assume that underground terrorist 

groups in such countries are, most likely, an atomised array of 

non- or little-connected actors.  

Red noise is common in the societies going through a terror-

ist war in a hot or latent phase. As in all other types, the inten-

sity of activity in this scenario can be both high and low. But 

the transition from high to low, if any, goes very slowly under 

the influence of some evident and rather strong objective fac-

tors. It means that the system is affected by some determining 

factors, which consistently reproduce the same level of terror 

activities. Such factors can be both generators and depressors 

of activity. In the “redˮ type countries, processes are very firmly 

controlled by the main actors. In this case, underground terror-

ist groups must be tight-knit, well-disciplined and solid. 

The actor generating terrorist activity in pink noise is probably 

a partially controlled system. It has long-term memory and is 

probably capable of strategic planning, but it does not have 

full control over its activity. Pink noise is produced in a system 

where the elements are connected, at least on the information 

level.  

“Pinkˮ societies have inherent system potential for a signifi-

cant rise in the number of terrorism events. Pink noise is an 

indicator of criticality. In this case, random events are accom-

panied by long-term trends and an accumulation of experience 

in the system. Events of any scale can occur in such societies. 

Strong perturbations are caused by ordinary fixed factors in-

herent to the system. It is possible that such factors are not 

even strong or prominent to an observer.  

Such a situation is extremely dangerous for system stability 

because of a high probability of avalanches – major outbreaks 

of terrorism without a long visible preparation period and a 

likely cause. Any reduction in law enforcement may lead to a 

rapid upsurge in terrorism. Moreover, as long as such potential 

inherent to the system exists, no counter-terrorism measures 

can completely end the avalanche effects. Even a long-lasting 

reduction in terrorism activity does not eliminate systemic mi-

croscopic processes that enable macroscopic avalanches.  

We believe that the change in colour is an indicator of trans-

formation in the internal properties of a system that generates 

the process in question. Namely, the transition from a low α 

value to the pink noise is a sign of self-organisation, the system 

being bombarded by all sorts of external impulses and the 

emergence of stable feedback loops.  

The following conclusions can be drawn from Figure 4, which 

shows clusters/types of terrorism activities. In recent years, the 

majority of the studied countries can be classified as the “pinkˮ 

type, with the exception of Western countries such as the 

United States, France, Spain, the United Kingdom and Ger-

many, which are “whiteˮ type. 

The “Israel…Pakistanˮ cluster is described by pink noise with 

a significant share of erratic behaviour. The latter factor, obvi-

ously, does not save the system from large-scale avalanches, 

but to a certain extent can offset the trends that render such 

avalanches inevitable.  

The “Turkey…RSAˮ cluster is dominated by pink noise, which 

makes large-scale outbursts of terrorism in these countries very 

likely. In these cases, terrorism appears to be a self-sustaining 

systemic phenomenon. However, we cannot assert the same 

about RSA and Sri Lanka, because the data used in the anal-

ysis referred to the previous period. 
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The “Afghanistan…Iraqˮ cluster is also “pink”, 

but tending strongly towards “redˮ. In these 

countries, terrorism has essentially become a 

tool of civil war. 

 

7777. . . . Counter ExamplesCounter ExamplesCounter ExamplesCounter Examples    

Could the effects of SOC in terrorism be a pro-

jection of self-organised criticality, which is pos-

sibly intrinsic to criminal activities in general? To 

answer this question, let us compare power-law 

exponents of terrorist events with other types of 

crime.  

Annual homicide dynamic was obtained from 

two sources: a study by Fink-Jensen (2015) for 

1940-1999, and the statistics of the United Na-

tions Office On Drugs and Crime (UNODC) for 

2000–2015. UNODC data is available to the 

public (https://data.unodc.org/). But exten-

sive-period data is available just for a few coun-

tries. 

Table 3 displays α and R2 values for the peri-

ods 1940–2015 and 1955–2015. The first pe-

riod includes the Second World War and post-

war years, and the second one excludes those 

years. But the aggregate statistics on both peri-

ods can form a picture on the dynamic of homi-

cides. 

Pink noise can be identified in many series. On 

the microscopic level, societies have inner po-

tential to generate this type of criminal activity. 

However, a group of countries is clearly prone to 

red noise. That includes Italy, France, the United 

Kingdom, Belgium, Spain, Germany, Hungary, 

Canada, Japan, the United States. For these 

countries, α is within the range from 1.41 to 

2.23. In the “redˮ group, homicide dynamic is 

marginal. 

Table Table Table Table 3333: Power: Power: Power: Power----law exponents in spectrogramslaw exponents in spectrogramslaw exponents in spectrogramslaw exponents in spectrograms    

CountryCountryCountryCountry    
1940194019401940----2015201520152015    1955195519551955----2015201520152015    

α    RRRR     
2222    α    RRRR    

2222    

Iceland -0.13 0.04 0.12 0.02 

Ireland 0.31 0.18 0.36 0.38 

Norway 0.43 0.26 0.34 0.22 

Mauritius 0.62 0.53 0.42 0.46 

Sri Lanka 0.64 0.34 0.62 0.46 

Luxembourg 0.69 0.53 0.70 0.59 

New Zealand 0.69 0.48 0.79 0.71 

Denmark 0.74 0.48 0.77 0.62 

Switzerland 0.85 0.54 0.88 0.63 

Italy 0.97 0.56 1.90 0.92 

Sweden 1.00 0.55 1.02 0.56 

Austria 1.02 0.65 1.00 0.74 

Australia 1.04 0.64 1.24 0.68 

Portugal 1.04 0.78 0.92 0.76 

Netherlands 1.05 0.75 1.24 0.84 

France 1.13 0.56 1.50 0.71 

United Kingdom 1.23 0.77 1.44 0.81 

Turkey 1.29 0.75 0.88 0.82 

Finland 1.31 0.75 0.95 0.68 

Chile 1.32 0.74 0.46 0.38 

Belgium 1.41 0.77 1.17 0.67 

Spain 1.56 0.84 1.45 0.90 

Germany 1.57 0.81 1.69 0.90 

Hungary 1.58 0.72 1.46 0.65 

Canada 1.59 0.76 1.69 0.82 

Japan 1.83 0.79 1.19 0.81 

United States 2.23 0.91 2.21 0.91 

Source data: annual homicide statistics, rate per 100,000 population. 
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This indicates that there are strong factors depressing crimi-

nal activities. Possibly, the civil society or the police state in 

these countries may have control mechanisms strong enough 

to suppress the criminal potential and neutralize sharp surges. 

Table 4 shows that “redˮ group countries have smaller α val-

ues for terrorism compared with homicides. The patterns inher-

ent to homicides are different to those of terrorism. This is es-

pecially true for the United States, where α is very low for ter-

rorism, compared with an extremely high value for homicides. 

For detailed comparison of α values in different types of 

criminal activities, we would need monthly data, which is not 

available to us, with the exception of Russia. The reports of 

Russian Ministry of Internal Affairs are available to the public 

(https://mvd.ru/folder/101762). Based on these reports, we 

produced numerical series reflecting the dynamic of acts of 

terror, total crime, extremist crimes, homicides, and theft 

(http://ineternum.ru/bd_extr/). We also analysed the series 

reflecting monthly victims (deaths and casualties) of terrorism 

in Russia (death and casualties). These numbers were sourced 

from the Global Terrorism Database (National Consortium 

2016) and RAND Database of Worldwide Terrorism Incidents 

(RAND 2018).  

Table 4: Comparison of Table 4: Comparison of Table 4: Comparison of Table 4: Comparison of α    values for homicides and tevalues for homicides and tevalues for homicides and tevalues for homicides and terrorism in the red group countriesrrorism in the red group countriesrrorism in the red group countriesrrorism in the red group countries    

CountryCountryCountryCountry    

TerrorismTerrorismTerrorismTerrorism    HomicidesHomicidesHomicidesHomicides    

PeriodPeriodPeriodPeriod    IIII    1994199419941994----2014201420142014    2008200820082008----2014201420142014    1940194019401940----2015201520152015    1955195519551955----2015201520152015    

yearsyearsyearsyears    α    RRRR2222    α    RRRR2222    α    RRRR2222    α    R2R2R2R2    α    R2R2R2R2    

France 1973-1992 0.41 0.408     0.5 0.262  0.09 0.006 1.13 0.56 1.50 0.71 

Germany 1970-1997 0.36 0.159 – – – – 1.57 0.81 1.69 0.90 

Spain 1971-1992 0.64 0.419 0.17 0.033 – – 1.56 0.84 1.45 0.90 

UK 1971-1992 0.67 0.476 0.70 0.480  0.19 0.071 1.23 0.77 1.44 0.81 

USA 1970-1992 0.99 0.580 0.17 0.061 -0.115 0.041 2.23 0.91 2.21 0.91 

 

Table 5: Table 5: Table 5: Table 5: PowerPowerPowerPower----law exponents law exponents law exponents law exponents in spectrogramsin spectrogramsin spectrogramsin spectrograms    

Data sourceData sourceData sourceData source    / / / / data typedata typedata typedata type    periodperiodperiodperiod    α    R2R2R2R2    

MIA RF / terrorism crimes  2006-2015 0.64              0.527 

MIA RF / extremist crimes 2006-2015 0.41              0.224 

MIA RF / homicides and attempted homicides 2006-2015 1.04              0.552 

MIA RF / theft 2006-2015 1.23            0.45 

MIA RF / all crimes 2006-2015 1.14              0.518 

GTD / terror attacks 1994-2014 0.56            0.48 

GTD / victims of terror attacks 1994-2014 0.07              0.015 

RAND / terrorism incidents  1998-2008 0.72              0.441 

RAND / victims of terrorism 1998-2008 0.00              0.000 

Source data: monthly numeric series of terrorism, extremist and other crime in Russia. 

Note: MIA RF: Crime in the Russian Federation (Ministry of Internal Affairs of Russia); GTD: Global Terrorism Database; RAND: RAND 

Database of Worldwide Terrorism Incidents. 
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The criminal underworld in Russia shows the signs of pink 

noise (see Table 5). However, when it comes to extremist 

crime, the dynamic is significantly more chaotic. In Russia, ex-

tremist crimes are those similar to acts of terror in their mo-

tives, but having less grave repercussions (such as, hooligan-

ism motivated by ethnic hostility). As expected, α values show 

that such crimes are mainly spontaneous.  

α approaches 0 in the series, reflecting the dynamic in vic-

tims of terrorism (Table 3). This outcome could be expected as 

well, since in such crimes, the number of casualties often de-

pends on many random factors and can vary greatly.  

We believe that pink noise in criminal activities is generated 

by intrinsic social parameters, and needs a separate analysis. 

Obviously, terrorism must be connected to the general state of 

the society and, consequently, general state of respective crim-

inal underworld. However, the data at hand does not indicate 

that SOC effects in the numeric series of terrorism are a direct 

and simple reflection, i.e. a particular case, of SOC effects, 

discovered in criminal activities. 

 

8888. . . . ConclusionConclusionConclusionConclusion    

We conducted a spectrum analysis of signals reflecting 

changes in terrorism activity in twenty countries over the last 

few decades. A significant share of such signals represents 

pink noise. This allows us to refer to the universal explanatory 

schemes of the SOC theory to interpret the inherent features 

and dynamics of the systems that generate such signals.  

In many countries terrorism is found to be self-organised 

phenomenon, which allows us to formulate certain hypotheses 

about non-linear effects, which manifest themselves in the in-

tensity of terrorism activity.  

In terms of SOC theory and several cognate concepts, micro-

scopic regularities and trivial daily micro-events generate com-

plex macroscopic behaviour, which is described as intermittent 

stability. Abrupt transformations (crisis, revolutions, outbreaks 

of activity) are not necessarily provoked by some strong and 

extraordinary determining factor. Macroscopic perturbations 

may be caused by ordinary, trivial properties of the system and 

a weak external disturbance. Complexity and numerous loop 

relations make the system display criticality and prevent it from 

putting down initial impulses. Criticality is a state of superim-

position of a great multitude of changes of a wide array of 

components.  

Changes in the nature of signals may point at quality 

changes of the corresponding systems. A formal parameter - 

power-law exponent - may serve as a criterion for classifying 

terrorism activity in different countries. 

Such findings give hope that the ideas and methodology of 

SOC theory can be heuristically efficient in social studies. 
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